How to translate text using browser tools
1 October 2002 Preclinical Studies in Normal Canine Prostate of a Novel Palladium-Bacteriopheophorbide (WST09) Photosensitizer for Photodynamic Therapy of Prostate Cancer
Qun Chen, Zheng Huang, David Luck, Jill Beckers, Pierre-Herve Brun, Brian C. Wilson, Avigdor Scherz, Yoram Salomon, Fred W. Hetzel
Author Affiliations +
Abstract

Photodynamic therapy (PDT) uses light to activate a photosensitizer to achieve localized tumor control. In this study, PDT mediated by a second-generation photosensitizer, palladium-bacteriopheophorbide WST09 (Tookad) was investigated as an alternative therapy for prostate cancer. Normal canine prostate was used as the animal model. PDT was performed by irradiating the surgically exposed prostate superficially or interstitially at 763 nm to different total fluences (100 or 200 J/cm2; 50, 100 or 200 J/cm) at 5 or 15 min after intravenous administration of the drug (2 mg/kg). Areas on the bladder and colon were also irradiated. The local light fluence rate and temperature were monitored by interstitial probes in the prostate. All animals recovered well, without urethral complications. During the 1 week to 3 month posttreatment period, the prostates were harvested for histopathological examination. The PDT-induced lesions showed uniform hemorrhagic necrosis and atrophy, were well delineated from the adjacent normal tissue and increased linearly in diameter with the logarithm of the delivered light fluence. A maximum PDT-induced lesion size of over 3 cm diameter could be achieved with a single interstitial treatment. There was no damage to the bladder or rectum caused by scattered light from the prostate. The bladder and rectum were also directly irradiated with PDT. At 80 J/cm2, a full-depth necrosis was observed but resulted in no perforation. At 40 J/cm2, PDT produced minimal damage to the bladder or rectum. On the basis of optical dosimetry, we have estimated that 20 J/cm2 is the fluence required to produce prostatic necrosis. Thus, the normal structure adjacent to the prostate can be safely preserved with careful dosimetry. At therapeutic PDT levels, there was no structural or functional urethral damage even when the urethra was within the treated region. Hence, Tookad-PDT appears to be a promising candidate for prostate ablation in patients with recurrent, or possibly even primary, prostate cancer.

Qun Chen, Zheng Huang, David Luck, Jill Beckers, Pierre-Herve Brun, Brian C. Wilson, Avigdor Scherz, Yoram Salomon, and Fred W. Hetzel "Preclinical Studies in Normal Canine Prostate of a Novel Palladium-Bacteriopheophorbide (WST09) Photosensitizer for Photodynamic Therapy of Prostate Cancer," Photochemistry and Photobiology 76(4), 438-445, (1 October 2002). https://doi.org/10.1562/0031-8655(2002)076<0438:PSINCP>2.0.CO;2
Received: 24 April 2002; Accepted: 1 July 2002; Published: 1 October 2002
JOURNAL ARTICLE
8 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

RIGHTS & PERMISSIONS
Get copyright permission
Back to Top